Bayes Factors and Model Uncertainty
نویسندگان
چکیده
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is one-half. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P-values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications. The points we emphasize are: from Jeffreys's Bayesian point of view, the purpose of hypothesis testing is to evaluate the evidence in favor of a scientific theory; Bayes factors offer a way of evaluating evidence in favor of a null hypothesis; Bayes factors provide a way of incorporating external information into the evaluation of evidence about a hypothesis; Bayes factors are very general, and do not require alternative models to be nested; several techniques are available for computing Bayes factors, including asymptotic approximations which are easy to compute using the output from standard packages that maximize likelihoods; in "non-standard" statistical models that do not satisfy common regularity conditions, it can be technically simpler to calculate Bayes factors than to derive non-Bayesian significance tests; the Schwarz criterion (or BIC) gives a crude approximation to the logarithm of the Bayes factor, which is easy to use and does not require evaluation of prior distributions; when one is interested in estimation or prediction, Bayes factors may be converted to weights to be attached to various models so that a composite estimate or prediction may be obtained that takes account of structural or model uncertainty; algorithms have been proposed that allow model uncertainty to be taken into account when the class of models initially considered is very large; Bayes factors are useful for guiding an evolutionary model-building process; and, finally, it is important, and feasible, to assess the sensitivity of conclusions to the prior distributions used.
منابع مشابه
Bayes Interval Estimation on the Parameters of the Weibull Distribution for Complete and Censored Tests
A method for constructing confidence intervals on parameters of a continuous probability distribution is developed in this paper. The objective is to present a model for an uncertainty represented by parameters of a probability density function. As an application, confidence intervals for the two parameters of the Weibull distribution along with their joint confidence interval are derived. The...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملEmpirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations
The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...
متن کاملEMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
متن کاملApproximate Bayes factors and accounting for model uncertainty in generalised linear models
Ways of obtaining approximate Bayes factors for generalised linear models are described, based on the Laplace method for integrals. We propose a new approximation which uses only the output of standard computer programs for estimating generalised linear models; this appears to be quite accurate. A reference set of proper priors is suggested, both to represent the situation where there is not mu...
متن کامل